Behaviour of Bolts and Nuts

Behaviour of Bolts and Nuts

Elasticity is defined in Hooke’s Law of Physics: The stress in a bolt is directly proportional to its strain. The stress-strain of a bolt has an elastic range and a plastic range. In this elastic range Hooke’s Law is true.

All of the elongation applied within the elastic range is relieved when the load is removed. The amount of elongation increases when more load is applied. When a bolt is stressed beyond its proof load (maximum load under which a bolt will behave in an elastic manner), the elastic elongation changes to plastic deformation and the strain will no longer be proportional to stress.

In the plastic deformation a part of the elongation will remain after the load is removed. The point where this permanent elongation occurs is called the yield strength. The further application of load takes the bolt to a point where it begins to fail this is termed its ultimate tensile strength (UTS). At this UTS-point, if additional force is applied to the bolt it will continue to elongate until it finally breaks. The point at which the bolt breaks is called the tensile point.